ϲ

Skip navigation

Dr Chuanbin Zhu

Assistant Professor

Department: Mechanical and Construction Engineering

Welcome to my university webpage!

I am an Assistant Professor in Geotechnical Engineering in the Faculty of Engineering and Environment. My research lies at the intersection of geotechnical engineering, earthquake engineering, and engineering seismology. The overarching goal of my research is to improve the hazard and risk evaluations for natural perils, especially earthquakes.

I earned my Ph.D. degree at the Queensland University of Technology, Australia, in 2018. My PhD thesis won the “Outstanding PhD Thesis Award” (top 5%). From 2018 to 2022, I worked as a Research Scientist at the Helmholtz Center Potsdam - GFZ German Research Centre for Geosciences, Germany. At GFZ, I contributed to the Horizon 2020 program “” which leads to a revised European seismic hazard reference model.

From 2022 to 2024, I worked at the University of Canterbury, New Zealand, as a Research Fellow. I contributed to the project which re-defines the seismic loading standard in New Zealand. Besides research, I developed a new course for graduate students, and co-supervised PhD students.

I was a visiting researcher at the University of Tokyo in 2018, and Kyoto University in 2022. I served as a reviewer for GJI, EQS, BSSA, SDEE, JEE, etc (approximately 20 per year), and Guest Editor of special issues of SCI journals, as well as convened/chaired sessions at the Seismological Society of America Annual Meetings (2019-2023), European Seismological Commission General Assembly (2022), and the 8thInternational Conference on Earthquake Geotechnical Engineering (2024).

Chuanbin Zhu

From 2000 to 2019, earthquakes claimed 721,318 lives, which account for 58% of death tolls caused by natural hazards (UN Office for Disaster Risk Reduction). If we can reliably forecast strong ground shaking during future catastrophic earthquakes, we can save lives. Despite the potential benefits, accurate prediction of earthquake ground shaking remains elusive. One of the major roadblocks is our inability to accurately predict the profound modification (e.g., amplification) of the Earth's near-surface structure (i.e., the top few hundred meters of the crust) to the seismic waves that travel through it - known as “site effects”.

I specialize in the characterization of earthquake site effects. My research interests include:

  • Site-effects characterization via observation, classic statistical modelling, physics-based simulations, and advanced data-driven methods,
  • Inversion of near- and sub-surface properties (e.g., using microtremor or seismicity data),
  • Uncertainty/variability quantification,
  • Site classification,
  • Signal processing, and
  • Database development.

For detailed information on my research, please visit my personal website:

I am particularly interested in applying disruptive techniques, e.g., deep learning, in science discovery and problem-solving in engineering seismology.

Please feel encouraged to contact me if you are interested in research or knowledge exchange collaborations, or in pursuing a research degree under my supervision.

  • Civil Engineering PhD July 24 2018
  • Associate Fellow of the Higher Education Academy


a sign in front of a crowd
+

Northumbria Open Days

Open Days are a great way for you to get a feel of the University, the city of Newcastle upon Tyne and the course(s) you are interested in.

Research at Northumbria
+

Research at Northumbria

Research is the life blood of a University and at ϲ we pride ourselves on research that makes a difference; research that has application and affects people's lives.

+

Find out what life here is all about. From studying to socialising, term time to downtime, we’ve got it covered.


Latest News and Features

In2Air study flats
Professor Greta Defeyter
a map showing areas of ice melt in Greenland
S2Cool project lead Dr Muhammad Wakil Shahzad
The Converted Flat in 2049, by the Interaction Research Studio, is one of seven period rooms built as part of the Real Rooms project which opened in July at the Museum of the Home in London.
The UK Centre for Polar Observation and Modelling (CPOM), based at ϲ, has been awarded over £400,000 by the European Space Agency to investigate tipping points in the Earth’s icy regions with a focus on the Antarctic. Photo by Professor Andrew Shepherd.
More news

Back to top